Abstract

Bubbles are an intrinsic problem in microfluidic devices and they can appear during the initial filling of the device or during operation. This report presents a generalizable technique to extract bubbles from microfluidic networks using an adjacent microfluidic negative pressure network over the entire microfluidic channel network design. We implement this technique by superimposing a network of parallel microchannels with a vacuum microfluidic channel and characterize the bubble extraction rates as a function of negative pressure applied. In addition, we generate negative pressure via a converging-diverging (CD) nozzle, which only requires inlet gas pressure to operate. Air bubbles generated during the initial liquid filling of the microfluidic network are removed within seconds and their volume extraction rate is calculated. This miniaturized vacuum source can achieve a vacuum pressure of 7.23psi which corresponds to a bubble extraction rate of 9.84 pL/s, in the microfluidic channels we characterized. Finally, as proof of concept it is shown that the bubble removal system enables bubble removal on difficult to fill microfluidic channels such as circular or triangular shaped channels. This method can be easily integrated into many microfluidic experimental protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call