Abstract
Autonomous underwater vehicles (AUVs) have been applied in various scientific missions including oceanographic research, bathymetry studies, sea mine detection, and marine pollution tracking. We have designed and field-tested in the ocean a backseat driver autonomous system for a 5.5 m survey-class Explorer AUV to detect and track a mixed-phase oil plume. While the first driver is responsible for controlling and safely operating the vehicle; the second driver processes real-time data surrounding the vehicle based on in situ sensor measurements and adaptively modifies the mission details. This adaptive sensing and tracking method uses the Gaussian blur and occupancy grid method. Using a large bubble plume as a proxy, our approach enables real-time adaptive modifications to the AUV’s mission details, and field tests show successful plume detection and tracking. Our results provide for remote detection of underwater oil plumes and enhanced autonomy with these large AUVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.