Abstract

Oxygen-selective membranes are likely to play a leading part in the future separation processes relevant to energy engineering. A newly developed molten copper and vanadium oxide-based diffusion-bubbling membrane with core-shell structure and fast combined oxygen mass transfer is a promising candidate for efficient oxygen separation. In this work, the oxygen bubble nucleation and transport properties of the diffusion-bubbling membrane were experimentally and theoretically studied. Bubble size distribution and cumulative oxygen flux have been plotted as functions of oxygen partial pressure. The relationship between the bubble density, oxygen partial pressure, and oxygen permeation flux was established. The oxygen flux and bubble density vary in the ranges of 3.2 × 10-8-1.4 × 10-7 mol cm-2 s-1 and 1.3 × 1013-5.8 × 1013 m-3 at ΔPO2 = 0.1-0.75 atm, respectively. The mechanisms of homogeneous, heterogeneous, pseudo-classical and non-classical nucleation are reviewed within the framework of the Cahn-Hilliard model. It is shown that the homogeneous nucleation mechanism is most likely in the membrane core. The estimated values of the interfacial tension, energy barrier, and rate nucleation are 0.02 J m-2, 5 kT, and 4 × 1029 m-3 s-1, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.