Abstract

Heterogeneous nucleate boiling over a flat surface has been studied through complete numerical simulations. During the growth and departure of the vapor bubble, the interface is tracked following a coupled level-set and volume of fluid approach. A microlayer evaporation model similar to Sato and Niceno [“A depletable microlayer model for nucleate pool boiling,” J. Comput. Phys. 300, 20–52 (2015)] has been deployed in this investigation. A detailed study of the changes in microlayer structure as a result of different modes of boiling scenario has been performed. The departure diameter is found to increase with an increase in substrate superheat. The predicted departure diameter has been compared with the available experimental and analytical results. A power-law curve has been obtained for depicting the growth rate of bubble depending on the degree of superheat at the wall. The space–time averaged wall-heat flux at different values of superheat temperature of substrate is obtained. Bubble growth during subcooled boiling at a low and intermediate subcooled degree has been observed through direct numerical simulations. The variations in bubble dynamics after departure in saturated and subcooled liquid states have been compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call