Abstract

The strong bubble interactions and bursting behaviors near a free surface are studied numerically with a compressible two-phase flow solver. The interface is captured by the volume of fluid method. We investigate the effects of the dimensionless distance between the bubble and the free surface γf (scaled by the maximum bubble radius) ranging from 0.25 to 1.5. For the nonbursting cases, the essential evolution of the toroidal bubble is well captured, including the splitting, coalescence, and recollapse. Generally, a relatively thin spike is generated at the free surface during the first cycle of the bubble. Subsequently, a wider secondary spike at the base of the first spike is formed during the second bubble cycle, which leads to the formation of the crown-shaped spike. When γf is sufficiently small, the bubble bursts at the free surface and an opening cavity is generated. The pressure inside the cavity and the atmospheric pressure are not balanced immediately, and the pressure difference lasts for a while, causing the inward gas flow and the final closure of the cavity. The gas flow is found to play a vital role in the bubble bursting behaviors, which has not been well understood. By comparing with previous studies, three distinct bursting patterns are identified and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.