Abstract

This work investigates the nucleation and growth of CO 2 bubbles due to chemical reactions of sulfuric acid and sodium bicarbonate in three types of microchannels: one with uniform cross-section, one converging, and another one diverging. The Y-shaped test section, composed of main and two front microchannels, was made of P-type 〈1 0 0〉 orientation SOI (silicon on insulator) wafer. Bubble nucleation and growth in microchannels under various conditions were observed using a high-speed digital camera. The theoretical model for bubble dynamics with a chemical reaction is reviewed or developed. In the present study, no bubble was nucleated at the given inlet concentration and in the range of flow rate in the converging microchannel while the nucleation and growth of bubbles were observed in the diverging and uniform cross-section microchannels. Bubbles are nucleated at the channel wall and the equivalent bubble radius increases linearly during the initial period of the bubble growth. The bubble growth behavior for a particular case, without relative motion between the bubble and liquid, shows that the mass diffusion controls the bubble growth; consequently, the bubble radius grows as a square root of the time and agrees very well with the model in the literature. On the other hand, for other cases the bubbles stay almost at the nucleation site while growing with a constant gas product generation rate resulting in the instant bubble radius following the one-third power of the time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.