Abstract

The presence of surfactant additives in water was found to enhance significantly the boiling heat transfer. The objective of the present investigation was to compare the bubble growth in water to that of a surfactant solution with negligible environmental impact. The study was conducted to clarify the effect of the heat flux on the dynamics of bubble nucleation. The bubble growth under condition of pool boiling in water and surfactant solutions was studied using high speed video technique. The bubble generation was studied on a horizontal flat surface; where the natural roughness of the surface was used to produce the bubbles. At heat flux of q= 10 kW/m2 the life-time and the volume of bubble growth in surfactant solution did not differ significantly from those of water. The time behavior of the contact angle of bubble growing in surfactant solution is qualitatively similar to that of water. At a heat flux of q= 50 kW/m2, boiling in surfactant solution, when compared with that of pure water, was observed to be more vigorous. Surfactant promotes activation of nucleation sites; the bubbles appeared in a cluster mode; the life-time of each bubble in the cluster is shorter than that of a single water bubble. The detachment diameter of water bubble increases with increasing heat flux, whereas analysis of bubble growth in surfactant solution reveals the opposite effect: the detachment diameter of the bubble decreases with increasing heat flux. Natural convection boiling of water and surfactants at atmospheric pressure in narrow horizontal annular channels was studied experimentally in the range of Bond numbers Bo = 0.185–1.52. The flow pattern was visualized by high-speed video recording to identify the different regimes of boiling of water and surfactants. The channel length was 24mm and 36mm, the gap size was 0.45, 1.2, 2.2, and 3.7mm. The heat flux was in the range of 20–500 kW/m2, the concentration of surfactant solutions was varied from 10 to 600 ppm. For water boiling at Bond numbers Bo<1 the CHF in restricted space is lower than that in unconfined space. This effect increases with increasing the channel length. For water at Bond number Bo = 1.52, boiling can almost be considered as unconfined. Additive of surfactant led to enhancement of heat transfer compared to water boiling in the same gap size, however, this effect decreased with decreasing gap size. For the same gap size, CHF in surfactant solutions was significantly lower than that in water. Hysteresis was observed for boiling in degraded surfactant solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call