Abstract

Controlling bubble diameter and bubble size distribution is important for a variety of applications and active fields of research. In this study the formation of bubbles from porous plates in a liquid cross-flow is examined experimentally. By injecting air through porous plates of various media grades (0.2 to 100) into liquid flows in rectangular channels of varying aspect ratio (1–10) and gas/liquid flow rates the impact of the various factors is presented. Image processing techniques were used to measure bubble diameters and capture their formation from the porous plates. Mean bubble diameters ranged from 0.06–1.21 mm. The present work expands upon the work of [1] and further identifies the relative importance of wall shear stress, air injector pore size and gas to liquid mass flow ratio on bubble size and size distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call