Abstract

The study reported here was undertaken because recent research on nucleate boiling has implicated vapor entrainment by drops as a mechanism for vapor bubble nucleation. The mechanism has been called secondary nucleation. The purpose of this research was to determine the behavior of entrained air bubbles when a drop of liquid strikes a liquid surface. A liquid drop striking the surface of a pool of the same liquid was found usually to entrain large numbers of small air bubbles. Some of these bubbles are frequently carried rapidly deep into the pool by a vortex ring but many can be deposited in a trail or left floating on the surface. Air bubble entrainment was observed with water and several organic liquids and some differences were noted. Drops with diameters from 200 μm to 4 mm were studied. Sometimes hundreds of bubbles were entrained some with diameters up to 100 μm. These results lend support to the secondary nucleation hypothesis and indicate further research on vapor bubble entrainment under conditions more typical of boiling would be appropriate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call