Abstract

Bubble dynamics in water subcooled flow boiling was investigated through visualization using a high-speed camera. The test section was a vertical rectangular channel, and a copper surface of low contact angle was used as a heated surface. Main experimental parameters were the pressure, mass flux and liquid subcooling. Although all the experiments were conducted under low void fraction conditions close to the onset of nucleate boiling, no bubbles stayed at the nucleation sites at which they were formed. Depending on the experimental conditions, the following two types of bubble behavior were observed after nucleation: (1) lift-off from the heated surface followed by collapsing rapidly in subcooled bulk liquid due to condensation, and (2) sliding along the vertical heated surface for a long distance. Since the bubble lift-off was observed only when the wall superheat was high, the boundary between the lift-off and the sliding could be determined in terms of the Jakob number. Based on the present experimental results, discussion was made for the possible mechanisms governing the bubble dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call