Abstract

Under a vibrating ultrasonic horn device, intense cavitation occurs but is restricted to a small volume due to strong attenuation effects. In this study, milli-scale channels were introduced under the horn. The effect of this on the cavitation development and intensity within the channels were explored. High speed videography of up to 100,000 fps and acoustic signal acquisition through hydrophone were conducted. Cavitation intensity was observed to increase within the channels as compared to free field condition. Bubble density increased with a decrease in channel diameter and a rise in ultrasonic amplitude. Furthermore, an intriguing phenomenon of large bubble cluster formation near the channel exit (20 mm away from the horn surface) was detected. The oscillation behaviour of these clusters is dependent on both channel diameter and ultrasonic amplitude. At the maximum ultrasonic amplitude, the clusters reached maximum radiuses exceeding 3 mm and collapsed violently. Repetitive transient collapses near the exit region suggest that the introduction of milli-scale channels could extend the effective cavitation zone length and enhance the overall cavitation intensity under an ultrasonic horn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call