Abstract

A bubble cell capillary classically used to extend the optical path length for UV-vis detection is employed here to trap magnetic beads. With this system, a large amount of beads can be captured without inducing a strong pressure drop, as it is the case with magnetic beads trapped in a standard capillary, thereby having less effect on the experimental conditions. Using numerical simulations and microscopic visualizations, the capture of beads inside a bubble cell was investigated with two magnet configurations. Pressure-driven and electro-osmotic flow velocities were measured for different amounts of protein-A-coated beads or C18-functionalized beads (RPC-18). Solid-phase extraction of a model antibody on protein-A beads and preconcentration of fluorescein on RPC-18 beads were performed as proof of concept experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.