Abstract

Fluidization hydrodynamics is greatly influenced by interparticle cohesive forces. In this paper, we study the bubbling behaviors of cohesive Geldart B particles in a 2D fluidized bed, using the “polymer coating” approach to introduce cohesive force. The effect of cohesive force on bubbles can be differentiated into two regimes: (i) by increasing the cohesive force within a low level, the bubble number increases, while the bubble fraction and bubble diameter decrease; (ii) when the force is large enough to cause the particles to adhere to the side walls of the bed, the bubble numbers and the bed expansion sharply decrease. With the increasing cohesive force, the bubble shape changes from roughly circular shape, to oblong shape, leading to the “short pass” of fluidizing gas through the bed. Finally, we analyzed the switching frequency and standard deviation of local pixel values to characterize the bubble dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call