Abstract
Boiling dynamics in microgravity need to be better understood before heat transfer systems based on boiling mechanism can be developed for space applications. This paper presents the results of a nucleate boiling experiment aboard Space Shuttle Endeavor (STS108). The experiment utilized nickel-chromium resistance wire to boil water in microgravity, and the data was recorded with a CCD camera and six thermistors. This data was analyzed to determine the behavior of bubble formation, detachment from the heating wire, and travel in the water with effects of drag on bubble movement. Bubbles were observed to be ejected from the wire, travel through and eventually stop in the unsaturated water. The data from this experiment is in good agreement with the results of theoretical equations used to model bubble-fluid dynamics in microgravity. The primary conclusion from this experiment is that a bubble can be ejected from a heated wire in the absence of gravity, instead of the creation of a single large vapor bubble. Further conclusions from this research could be applied to the development of safe and efficient heat transfer systems for microgravity and terrestrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.