Abstract

The bubble-assisted Liquid Hole Multiplier (LHM) is a novel concept for the combined detection of ionization electrons and scintillation photons in noble-liquid time projection chambers. It consists of a perforated electrode immersed in the noble liquid, with heating wires generating a stable vapor bubble underneath. Radiation-induced ionization electrons in the liquid drift into the electrode's holes and cross the liquid-vapor interface into the bubble where they induce electroluminescence (EL). The top surface of the electrode is optionally coated with a CsI photocathode; radiation-induced UV-scintillation photons extract photoelectrons that induce EL in a similar way. EL-photons recorded with an array of photo-sensors, e.g. SiPMs, provide event localization. We present the basic principles of the LHM concept and summarize the results obtained in LXe and LAr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call