Abstract
This study assessed the cleaner and sustainable environment by measuring emission levels of benzene, toluene, ethylbenzene, and xylene (BTEX) from informal food traders using charcoal as the primary source of energy at a flea market in Fordsburg, Johannesburg. Volatile organic compounds (VOCs) were measured using a real-time monitor (MiniRae 3000 photoionization detector); an indoor air quality (IAQ) monitor was used to monitor environmental parameters and passive samplers in the form of Radiello badges, which were used to determine BTEX emissions from charcoal used during food preparation. Measurements were taken at 1.5 m above ground assuming the receptor’s breathing circumference using PID and Radiello. PID data were downloaded and analyzed using Microsoft Excel(Version 2019). Radiellos were sent to the laboratory to determine the BTEX levels from the total VOCs. The total volatile organic compound (TVOC) concentration over the combustion cycle was 306.7 ± 62.8 ppm. The flaming phase had the highest VOC concentration (547 ± 110.46 ppm), followed by the ignition phase (339.44 ± 40.6 ppm) and coking with the lowest concentration (24.64 ± 14.3). The average BTEX concentration was 15.7 ± 5.9 µg/m3 corresponding to the entire combustion cycle. BTEX concentrations were highest at the flaming phase (23.6 µg/m3) followed by the ignition (13.4 µg/m3) and coking phase (9.45 µg/m3). Ignition phase versus the flaming phase, there was a significant difference at 95% at a p-value of 0.09; ignition phase versus the coking phase, there was a significant difference at 95% at a p-value of 0.039; and coking phase versus the flaming phase, there was a significant difference at 95% at a p-value of 0.025. When compared to the occupational exposure limits (OELs), none of the exposure concentrations (BTEX) were above the 8 h exposure limit. The findings of this study suggest that charcoal, as a source of energy, can still be a useful and sustainable fuel for informal food traders. Shortening the ignition and flaming phase duration by using a fan to supply sufficient air can further reduce exposure to VOCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.