Abstract
Abstract The high-pressure thermal properties and their correlation with burning rates of the composite modified double base (CMDB) propellants containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz), a substitute of hexogen (RDX), were investigated using the high-pressure differential scanning calorimetry (PDSC). The results show that there is a main exothermal decomposition process with the heating of each propellant. High pressure can restrain the volatilization of NG, accelerate the main decomposition reaction, and make the reaction occur easily. High pressure can change the main decomposition reaction mechanism function and kinetics, and the control process obeys the rule of Avrami–Erofeev equation at high pressure and chemical reaction at normal pressure. However, the mechanism function can not be changed by the ballistic modifier. The correlation between PDSC characteristic values and burning rates was carried out and found that u and keep a good linear relation, ku keeps a si...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.