Abstract

Mastitis is characterized by inflammatory damage to mammary gland tissue, which could decline milk production and quality and significantly affect the economic benefits of ranching. MicroRNAs (miRNAs), such as miR-199a-3p, are novel therapeutic targets in inflammation, and their regulation is an effective strategy for inflammation control. Despite its importance in humans and animals, the molecular mechanism of bovine miR-199a-3p (bta-miR-199a-3p) in dairy cow mastitis and bovine mammary epithelial cell (bMEC) inflammation is unclear. In our study, a bovine mammary epithelial cell line (MAC-T) induced by lipopolysaccharide (LPS) was used as an inflammatory cell model to investigate the molecular mechanism of bta-miR-199a-3p in the MAC-T inflammatory response. bta-miR-199a-3p was up-regulated in the LPS-induced MAC-T cells, while CD2-associated protein (CD2AP) was revealed as its target gene in a double luciferase reporter gene experiment. In addition, the overexpression of bta-miR-199a-3p negatively regulated the expression of CD2AP and the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor kappa-B (NF-κB) signaling pathway. These subsequently inhibited the secretion of related inflammatory factors (TNF-α, IL-1β, and IL-6) and the expression of apoptotic genes (CASP3 and CASP9), thereby alleviating the LPS-challenged inflammatory response in the MAC-T cells. Silencing of bta-miR-199a-3p, however, reversed the above effects. Thus, bta-miR-199a-3p inhibits LPS-induced inflammation in bMECs by directly targeting CD2AP and regulating the PI3K/AKT/NF-κB signaling pathway. This study reveals the potential regulatory mechanism of bta-miR-199a-3p in bMEC inflammatory immune response and may serve as a useful target for the treatment of mastitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.