Abstract

There have been few investigations of the possible effects of genetically engineered plants on the microbiota and enzyme activities in flooded soil. We studied the influence of the transgenic rice KeMingDao (KMD) straw on the culturable microbiota and enzymatic activities in a flooded paddy soil under laboratory conditions. KMD contained a synthetic cry1Ab gene from Bacillus thuringiensis under the control of a maize ubiquitin promoter and linked in tandem with the gusA and hpt genes. The results showed that there were only some occasional significant differences ( P<0.05) in the number of Colony forming units of aerobic bacteria, actinomycetes and fungi and in the number of anaerobic fermentative bacteria, denitrifying bacteria, hydrogen-producing acetogenic bacteria, and methanogenic bacteria between the paddy soil amended with Bt-transgenic rice straw and with the non-Bt parental rice straw during the early stages of incubation. From d14 to d84 there were significant increases ( P<0.05) in soil dehydrogenase and soil neutral phosphatase activity in soils amended with rice straw compared to soil without added straw. The dehydrogenase activity was significantly greatly (almost 1.95-fold) in soil amended with Bt-transgenic straw from d7 to d14 but from d21 to d49 there was significantly greater activity (about 1.47-fold) in the soil amended with non-Bt-straw. There were no apparent differences between the activity of soil neutral phosphatase in the soils to which non-Bt-straw and Bt-straw had been added. However, both soils to which rice straws were added demonstrated significant differences in the number of microorganisms except for aerobic bacteria and enzymatic activities with respect to the control soil throughout the incubation. The above results indicated that the Bt-straw from KMD transgenic rice is not toxic to a variety of culturable microorganisms in the studied flooded paddy soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.