Abstract
Consistent basis sets of triple-zeta valence with polarization quality for the elements Cs-Po were derived for periodic quantum-chemical solid-state calculations. They are an extension of the pob-TZVP-rev2 [Vilela Oliveira, D.; Laun, J.; Peintinger, M. F. and Bredow, T., J. Comput. Chem., 2019, 40 (27), 2364-2376] basis sets and are based on the fully relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2-TZVP valence basis of the Ahlrichs group. The basis sets are constructed to minimize the basis set superposition error (BSSE) in crystalline systems. The contraction scheme, the orbital exponents, and contraction coefficients were optimized in order to ensure robust and stable self-consistent-field (SCF) convergence for a set of compounds and metals. For the applied PW1PW hybrid functional, the average deviations of the calculated lattice constants from experimental references are smaller with pob-TZVP-rev2 than with standard basis sets available from the CRYSTAL basis set database.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.