Abstract

In the scenario of mobile fog computing (MFC), communication between vehicles and fog layer, which is called vehicle-to-fog (V2F) communication, needs to use bandwidth resources as much as possible with low delay and high tolerance for errors. In order to adapt to these harsh scenarios, there are important technical challenges concerning the combination of network coding (NC) and multipath transmission to construct high-quality V2F communication for cloud-aware MFC. Most NC schemes exhibit poor reliability in burst errors that often occur in high-speed movement scenarios. These can be improved by using interleaving technology. However, most traditional interleaving schemes for multipath transmission are designed based on round robin (RR) or weighted round robin (WRR), in practice, which can waste a lot of bandwidth resources. In order to solve those problems, this paper proposes a novel multipath transmission scheme for cloud-aware MFC, which is called Bidirectional Selection Scheduling (BSS) scheme. Under the premise of realizing interleaving, since BSS can be used in conjunction with a lot of path scheduling algorithms based on Earliest Delivery Path First (EDPF), it can make better use of bandwidth resources. As a result, BSS has high reliability and bandwidth utilization in harsh scenarios. It can meet the high-quality requirements of cloud-aware MFC for transmission.

Highlights

  • Mobile fog computing (MFC) extends cloud computing by adding a fog layer between vehicles and cloud, which has lower transmission delay and less traffic burden [1,2,3]

  • Unlike mobile edge computing (MEG), since MFC is able to be aware of the centralized cloud, it can jointly work with the centralized cloud [4]

  • We propose a novel burst error-correction scheme of V2F communication for cloud-aware MFC

Read more

Summary

Introduction

Mobile fog computing (MFC) extends cloud computing by adding a fog layer between vehicles and cloud, which has lower transmission delay and less traffic burden [1,2,3]. During the communication between vehicles and fog layer, especially for delay-sensitive users, data loss greatly affects the quality of experience [5]. In order to meet the high-quality service requirements in mobile scenarios, it is important to construct vehicle-to-fog (V2F) communication with high reliability and bandwidth utilization for cloud-aware MFC. V2F communication requires a large amount of data to be quickly transmitted [6, 7]. It needs to use bandwidth resources with lower delay and higher tolerance for errors

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.