Abstract
BackgroundBisulfite sequencing is one of the most widely used technologies in analyzing DNA methylation patterns, which are important in understanding and characterizing the mechanism of DNA methylation and its functions in disease development. Efficient and user-friendly tools are critical in carrying out such analysis on high-throughput bisulfite sequencing data. However, existing tools are either not scalable well, or inadequate in providing visualization and other desirable functionalities.ResultsIn order to handle ultra large sequencing data and to provide additional functions and features, we have developed BSPAT, a fast online tool for bisulfite sequencing pattern analysis. With a user-friendly web interface, BSPAT seamlessly integrates read mapping/quality control/methylation calling with methylation pattern generation and visualization. BSPAT has the following important features: 1) instead of using multiple/pairwise sequence alignment methods, BSPAT adopts an efficient and widely used sequence mapping tool to provide fast alignment of sequence reads; 2) BSPAT summarizes and visualizes DNA methylation co-occurrence patterns at a single nucleotide level, which provide valuable information in understanding the mechanism and regulation of DNA methylation; 3) based on methylation co-occurrence patterns, BSPAT can automatically detect potential allele-specific methylation (ASM) patterns, which can greatly enhance the detection and analysis of ASM patterns; 4) by linking directly with other popular databases and tools, BSPAT allows users to perform integrative analysis of methylation patterns with other genomic features together within regions of interest.ConclusionBy utilizing a real bisulfite sequencing dataset generated from prostate cancer cell lines, we have shown that BSPAT is highly efficient. It has also reported some interesting methylation co-occurrence patterns and a potential allele-specific methylation case. In conclusion, BSPAT is an efficient and convenient tool for high-throughput bisulfite sequencing data analysis that can be broadly used.
Highlights
Bisulfite sequencing is one of the most widely used technologies in analyzing DNA methylation patterns, which are important in understanding and characterizing the mechanism of DNA methylation and its functions in disease development
Abnormal DNA methylation patterns in CpG dinucleotides have been shown to be associated with human diseases such as cancer [2]
We present a web application service named Bisulfite sequencing pattern analysis (BSPAT) for Bisulfite Sequencing Pattern Analysis Tool, which takes advantage of Bismark’s read alignments and methylation calling functionalities, and provides further quality control, co-occurrence pattern analysis, simple allele specific methylation analysis, visualization and integration with other databases and tools
Summary
In order to handle ultra large sequencing data and to provide additional functions and features, we have developed BSPAT, a fast online tool for bisulfite sequencing pattern analysis. With a user-friendly web interface, BSPAT seamlessly integrates read mapping/quality control/methylation calling with methylation pattern generation and visualization. BSPAT has the following important features: 1) instead of using multiple/pairwise sequence alignment methods, BSPAT adopts an efficient and widely used sequence mapping tool to provide fast alignment of sequence reads; 2) BSPAT summarizes and visualizes DNA methylation co-occurrence patterns at a single nucleotide level, which provide valuable information in understanding the mechanism and regulation of DNA methylation; 3) based on methylation co-occurrence patterns, BSPAT can automatically detect potential allele-specific methylation (ASM) patterns, which can greatly enhance the detection and analysis of ASM patterns; 4) by linking directly with other popular databases and tools, BSPAT allows users to perform integrative analysis of methylation patterns with other genomic features together within regions of interest
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.