Abstract

Multiple myeloma (MM) is a haematologic malignancy characterized by the presence of atypical plasma cells. Basigin (BSG, CD147) controls lactate export through the monocarboxylic acid transporter 1 (MCT1, SLC16A1) and supports MM survival and proliferation. Additionally, BSG is implicated in response to treatment with immunomodulatory drugs (thalidomide and its derivatives). We investigated the role of single nucleotide polymorphisms (SNPs) in the gene coding for BSG and SLC16A1 in MM. Following an in silico analysis, eight SNPs (four in BSG and four in SLC16A1) predicted to have a functional effect were selected and analyzed in 135 MM patients and 135 healthy individuals. Alleles rs4919859 C, rs8637 G, and haplotype CG were associated with worse progression-free survival (p = 0.006, p = 0.017, p = 0.002, respectively), while rs7556664 A, rs7169 T and rs1049434 A (all in linkage disequilibrium (LD), r2 > 0.98) were associated with better overall survival (p = 0.021). Similar relationships were observed in thalidomide-treated patients. Moreover, rs4919859 C, rs8637 G, rs8259 A and the CG haplotype were more common in patients in stages II–III of the International Staging System (p < 0.05), while rs8259 A correlated with higher levels of β-2-microglobulin and creatinine (p < 0.05). Taken together, our results show that BSG and SLC16A1 variants affect survival, and may play an important role in MM.

Highlights

  • Multiple myeloma (MM) is the second most common human haematologic malignancy

  • The analysis showed that alleles rs4919859 C

  • There have been many significant discoveries regarding the processes occurring during response to MM therapy with immunomodulatory drugs

Read more

Summary

Introduction

Multiple myeloma (MM) is the second most common human haematologic malignancy. It is characterized by presence of atypical plasma cells (myeloma cells) in the bone marrow, impaired immunoglobulin production, and presence of monoclonal protein in serum and urine [1]. Basigin (BSG), known as CD147 and extracellular matrix metalloproteinase inducer (EMMPRIN), is a transmembrane glycoprotein and a member of the immunoglobulin superfamily [3]. It is widely expressed on many cells and carries the Ok blood group in humans [4].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.