Abstract
We use the gradient of the energy-integrated angle resolved photoemission (ARPES) intensity in order to define precisely the Fermi surface (FS) in BSCCO superconductors. We show that, independent of the photon energy, the FS is a hole barrel centered at ({pi},{pi}), Then, the superconducting gap along the FS is precisely determined from ARPES measurements on over-doped and underdoped samples of Bi2212. As the doping decreases, the maximum gap increases, but the slope of the gap near the nodes decreases. Though consistent with d-wave symmetry, the gap with underdoping cannot be fit by the simple cos(k{sub x})-cos(k{sub y}) form. A comparison of our ARPES results with available penetration depth data indicates that the renormalization of the linear T suppression of the superfluid density at low temperatures due to quasiparticle excitations around the d-wave nodes is large and doping dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.