Abstract

Bryostatin-1, a macrocyclic lactone, is an antineoplastic agent that potently activates protein kinase C. Bryostatin-1 (Bryo) had an immunomodulatory effect on murine B cells in that it specifically inhibited IgE production. IgE levels were inhibited in a B cell dose-response curve, whereas IgM and IgG1 were induced by Bryo treatment. Taken together, ELISPOT and surface Ig staining data suggested that Bryo inhibition occurred at the level of class switching. RT-PCR and real time PCR data showed that this inhibition was achieved at an early step in switch recombination, namely, the appearance of Iepsilon germline transcripts. Although Bryo caused a delay in the proliferative response of IL-4/CD40 ligand trimer-stimulated B cells, CFSE studies revealed that the Bryo-mediated inhibition of class switching to IgE occurred independently of the number of division cycles. Notably, Bryo showed the same specific IgE inhibition in human B cells. This study provides evidence for a unique mechanism regulating IgE production possibly downstream of PKC by specifically modulating Iepsilon germline transcription.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call