Abstract

Sepsis is one of the most prevalent diseases in the world. The development of cardiac dysfunction in sepsis results in an increase of mortality. It is known that Bruton's tyrosine kinase (BTK) plays a role in toll-like receptor signaling and NLRP3 inflammasome activation, two key components in the pathophysiology of sepsis and sepsis-associated cardiac dysfunction. In this study we investigated whether pharmacological inhibition of BTK (ibrutinib 30 mg/kg and acalabrutinib 3 mg/kg) attenuates sepsis associated cardiac dysfunction in mice. 10-week old male C57BL/6 mice underwent CLP or sham surgery. One hour after surgery mice received either vehicle (5% DMSO + 30% cyclodextrin i.v.), ibrutinib (30 mg/kg i.v.), or acalabrutinib (3 mg/kg i.v.). Mice also received antibiotics and an analgesic at 6 and 18 h. After 24 h, cardiac function was assessed by echocardiography in vivo. Cardiac tissue underwent western blot analysis to determine the activation of BTK, NLRP3 inflammasome and NF-κB pathway. Serum analysis of 33 cytokines was conducted by a multiplex assay. When compared to sham-operated animals, mice subjected to CLP demonstrated a significant reduction in ejection fraction (EF), fractional shortening (FS), and fractional area change (FAC). The cardiac tissue from CLP mice showed significant increases of BTK, NF-κB, and NLRP3 inflammasome activation. CLP animals resulted in a significant increase of serum cytokines and chemokines (TNF-α, IL-6, IFN-γ, KC, eotaxin-1, eotaxin-2, IL-10, IL-4, CXCL10, and CXCL11). Delayed administration of ibrutinib and acalabrutinib attenuated the decline of EF, FS, and FAC caused by CLP and also reduced the activation of BTK, NF-κB, and NLRP3 inflammasome. Both ibrutinib and acalabrutinib significantly suppressed the release of cytokines and chemokines. Our study revealed that delayed intravenous administration of ibrutinib or acalabrutinib attenuated the cardiac dysfunction associated with sepsis by inhibiting BTK, reducing NF-κB activation and the activation of the inflammasome. Cytokines associated with sepsis were significantly reduced by both BTK inhibitors. Acalabrutinib is found to be more potent than ibrutinib and could potentially prove to be a novel therapeutic in sepsis. Thus, the FDA-approved BTK inhibitors ibrutinib and acalabrutinib may be repurposed for the use in sepsis.

Highlights

  • Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to an infection [1], which affects approximately 30 million people worldwide [2]

  • When compared to Cecum Ligation and Puncture (CLP) mice treated with vehicle, the administration of ibrutinib (30 mg/kg) or acalabrutinib (3 mg/kg) at 1 h after CLP significantly attenuated the decline in EF, FS and FAC caused by CLP (P < 0.01; Figures 1B–E)

  • To gain a better insight into the mechanism by which the two Bruton’s tyrosine kinase (BTK)-inhibitors reduce the cardiac dysfunction associated with sepsis, we investigated the effects of ibrutinib and acalabrutinib on (a) BTK-activation and signaling, (b) NF-κB activation, and (c) NLRP3 inflammasome assembly and activation

Read more

Summary

Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to an infection [1], which affects approximately 30 million people worldwide [2]. Evidence suggests that multiple factors contribute to the pathophysiology of the cardiac dysfunction associated with sepsis. These include the activation of NF-κB and NLRP3 leading to excessive formation of e.g., IL-1 and TNF-α [7, 8]. There are currently no drugs for the specific treatment of the cardiac dysfunction (or the multiple organ dysfunction) associated with sepsis that target NF-κB and the NLRP3 inflammasome

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call