Abstract

The classical PID controller, which serves for controlling the revolutions per minute of brushless direct current motor (BLDCM), has limitations of long settle time, slow response speed and violent fluctuation. To remedy this matter occurred above, by virtue of the whale optimization algorithm WOA and the fuzzy neural network PID controller modeled on the elementary structure of BLDCM, a modified approach to adjust revolutions per minute is raised in our paper. At the outset, under the action of the nonlinear approximation of fuzzy neural network, the uncertain coefficients of PID controller are timely altered. Then, considering that the initial values of fuzzy neural network are stochastic, the WOA method is used to prepare the parameters for neural network and it is further refined via the Lévy flight perturbation method. Eventually, there are several simulations to test this controller, and results demonstrate that the enhanced controller put forward by us is able to have good effects on the properties of system accuracy, response speed and anti-disturbance capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.