Abstract
Interfacing artificial materials with biological tissues remains a challenge. The direct contact of their surface with the biological milieu results in multiscale interactions, in which biomacromolecules adsorb and act as transducers mediating the interactions with cells and tissues. So far, only antifouling polymer brushes have been able to conceal the surface of synthetic materials. However, their complex synthesis has precluded their translation to applications. Here, it is shown that ultrathin surface-attached hydrogel coatings of N-(2-hydroxypropyl) methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) provide the same level of protection as brushes. In spite of being readily applicable, these coatings prevent the fouling from whole blood plasma and provide a barrier to the adhesion of Gram positive and negative bacteria. The analysis of the components of the surface free energy and nanoindentation experiments reveals that the excellent antifouling properties stem from the strong surface hydrophilicity and the presence of a brush-like structure at the water interface. Moreover, these coatings can be functionalized to achieve antimicrobial activity while remaining stealth and non-cytotoxic to eukaryotic cells. Such level of performance is previously only achieved with brushes. Thus, it is anticipated that this readily applicable strategy is a promising route to enhance the biocompatibility of real biomedical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.