Abstract

Strapping plasmonic substrate with a reliable ability to anchor molecules and achieve reproducible result provides trustworthy opportunities for flourishing surface-enhanced Raman scattering (SERS) technique. Herein, a facile controllable in-situ anisotropic growth strategy was exploited to anchor gold nanowires (Au NWs) onto two-dimensional g-C3N4 nanosheets (g-C3N4/Au NWs), facilitating a sensitive and recyclable SERS sensor for gaseous analytes. Benefiting from the attractive enrichment effect of the brush-like surface formed by numerous small Au NWs as well as their rich nanotips-mediated enhancement capability, the hybrid substrate showed an outstanding performance in SERS-based detection of trace 4-Aminothiophenol (4-ATP) molecules, demonstrating a monitoring limitation down to 10−8 M even in atmosphere. Satisfyingly, under visible light illumination, the efficient green photocatalytic ability derived from the g-C3N4 supporting matrix rendered reusable capability for the substrate, whose SERS signal was kept at a persistent high level throughout 6 cycles. Attributed to the narrow line width of SERS spectrum, the 4-ATP assay under the interference of 2-naphthalenethiol (2-NAT) was acquired in gas phase and the dependable recovery rates from 85.4 to 93.9% were confirmed as well. Thanks to the intriguing features including excellent sensitivity and recyclability, the g-C3N4/Au NWs substrate proposed here will pave the way toward the potential application of SERS technique in multiplexed gaseous detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.