Abstract

BackgroundCentral nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. We have recently demonstrated that B. abortus infects microglia and astrocytes, eliciting the production of a variety of pro-inflammatory cytokines which contribute to CNS damage. Matrix metalloproteinases (MMP) have been implicated in inflammatory tissue destruction in a range of pathological situations in the CNS. Increased MMP secretion is induced by pro-inflammatory cytokines in a variety of CNS diseases characterized by tissue-destructive pathology.MethodsIn this study, the molecular mechanisms that regulate MMP secretion from Brucella-infected astrocytes in vitro were investigated. MMP-9 was evaluated in culture supernatants by ELISA, zymography and gelatinolytic activity. Involvement of mitogen-activated protein kinases (MAPK) signaling pathways was evaluated by Western blot and using specific inhibitors. The role of TNF-α was evaluated by ELISA and by assays with neutralizing antibodies.ResultsB. abortus infection induced the secretion of MMP-9 from murine astrocytes in a dose-dependent fashion. The phenomenon was independent of bacterial viability and was recapitulated by L-Omp19, a B. abortus lipoprotein model, but not its LPS. B. abortus and L-Omp19 readily activated p38 and Erk1/2 MAPK, thus enlisting these pathways among the kinase pathways that the bacteria may address as they invade astrocytes. Inhibition of p38 or Erk1/2 significantly diminished MMP-9 secretion, and totally abrogated production of this MMP when both MAPK pathways were inhibited simultaneously. A concomitant abrogation of B. abortus- and L-Omp19-induced TNF-α production was observed when p38 and Erk1/2 pathways were inhibited, indicating that TNF-α could be implicated in MMP-9 secretion. MMP-9 secretion induced by B. abortus or L-Omp19 was completely abrogated when experiments were conducted in the presence of a TNF-α neutralizing antibody. MMP-9 activity was detected in cerebrospinal fluid (CSF) samples from patients suffering from neurobrucellosis.ConclusionsOur results indicate that the inflammatory response elicited by B. abortus in astrocytes would lead to the production of MMP-9 and that MAPK may play a role in this phenomenon. MAPK inhibition may thus be considered as a strategy to control inflammation and CNS damage in neurobrucellosis.

Highlights

  • Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis

  • B. abortus infection induces Matrix metalloproteinases (MMP)-9 secretion from astrocytes We have previously demonstrated the ability of B. abortus to invade and replicate in primary cultures of mouse astrocytes [25]

  • Astrocyte infection resulted in an increased MMP activity that was detected by zymography in the supernatants of infected cells at 48 hours post infection, which according to the molecular weight of the band corresponded to MMP-9 (Figure 1A)

Read more

Summary

Introduction

Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. Increased MMP secretion is induced by pro-inflammatory cytokines in a variety of CNS diseases characterized by tissue-destructive pathology. Human brucellosis is a protean disease with a diversity of clinical signs and symptoms resulting from infection with Brucella species [1]. Inflammation is present both in the acute and chronic phases of the disease and in virtually all of the organs affected. In the central nervous system (CNS), where the function of neurons is normally protected by the maintenance of an antiinflammatory environment [3], infection with Brucella leads to an inflammatory disorder called neurobrucellosis which involves tissue destruction [4,5]. A better understanding of the pathogenesis of neurobrucellosis would help if improvements are to be made on therapies that help to cure or ameliorate this form of the disease [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.