Abstract

BackgroundTriple-negative breast cancer (TNBC) has a poor prognosis because of its high degree of malignancy and the lack of effective treatment options. Cancer-associated fibroblasts (CAFs) comprise the most abundant stromal cells in the tumor microenvironment (TME), leading to functional impairments and facilitating tumor metastasis. Excessive TNF-α further promotes cross-talk between different cells in TME. Therefore, there is an urgent need to develop more effective therapies and potential drugs that target the key factors that promote TNBC metastasis. PurposeThe study aimed to evaluate the efficacy of Bruceine D, an active compound derived from the Chinese herb Brucea javanica, in inhibiting metastasis and elucidate the underlying mechanism of action in TNBC. MethodsIn vitro, the clonogenic and the Transwell assays were used to assess the effects of Bruceine D on the proliferation, migration and invasion abilities of co-cultured CAFs and MDA-MB-231 (4T1) cells under TNF-α stimulation. TNF-α, IL-6, CXCL12, TGF-β1, and MMP9 levels in the supernatant of co-cultured cells were determined using ELISA. Western blotting was utilized to detect the expression levels of proteins related to the Notch1-Jagged1/NF-κB(p65) pathway. In vivo, the anti-tumor growth and anti-metastatic effectiveness of Bruceine D was evaluated by determining tumor weight, number of metastatic lesions, and pathological changes in the tumor and lung/liver tissues. The inhibitory effect of Bruceine D on α-SMA+ CAFs activation and CAF-medicated extracellular matrix remodeling was accessed using immunohistochemistry, immunofluorescence, and Masson and Sirius Red staining. The expression levels of Notch1, Jagged1 and p-NF-κB(p65) proteins in the primary tumors were measured by immunohistochemistry and western blotting. ResultsIn vitro, Bruceine D significantly inhibited the migration and invasion of co-cultured CAFs and MDA-MB-231 (4T1) cells under TNF-α stimulation, reduced the expression of tumor-promoting and matrix-remodeling cytokines secreted by CAFs, and hindered the mutual activation of Notch1-Jagged1 and NF-κB(p65). In vivo, Bruceine D significantly suppressed tumor growth and the formation of lung and liver metastases by decreasing TNF-α stimulated α-SMA+ CAFs activation, collagen fibers, MMPs production, and inhibited Notch1-Jagged1/NF-κB(p65) signaling in TNBC-bearing mice. ConclusionBruceine D effectively weakened the "tumor-CAF-inflammation" network by inhibiting the mutual activation of Notch1-Jagged1 and NF-κB(p65) and thereby suppressed TNBC metastasis. This study first explored that Bruceine D disrupted the cross-talk between CAFs and tumor cells under TNF-α stimulation to inhibit the metastasis of TNBC, and highlighted the potential of Bruceine D as therapeutic agent for suppressing tumor metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.