Abstract

The research community has been perplexed for the past five years with the unusually high effective thermal conductivity of nanofluids. Although various mechanisms and models have been proposed in the literature to explain the high conductivity of these nanofluids, no concrete conclusions have been reached. Through an order-of-magnitude analysis of various possible mechanisms, we show that convection caused by the Brownian movement of these nanoparticles is primarily responsible for the enhancement in the thermal conductivity of such colloidal nanofluids. We also introduce a convective-conductive model which accurately captures the effects of particle size, choice of base liquid, thermal interfacial resistance between the particles and liquid, temperature, etc. This model is a combination of the Maxwell-Garnett (MG) conduction model and the convection caused by the Brownian movement of the nanoparticles, and reduces to the MG model for large particle sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.