Abstract

Traditional models for molecular (Brownian) motors predominantly depend on nonequilibrium driving, while particle interactions rigorously adhere to Newton's third law. However, numerous living and natural systems at various scales seem to defy this well-established law. In this study, we investigated the transport of mixed Brownian particles in a two-dimensional ratchet potential with nonreciprocal interactions. Our findings reveal that these nonreciprocal interactions can introduce a zero-mean nonequilibrium driving force. This force is capable of disrupting the thermodynamic equilibrium and inducing directed motion. The direction of this motion is determined by the asymmetry of the potential. Interestingly, the average velocity is a peaked function of the degree of nonreciprocity, while the effective diffusion consistently increases with the increase of nonreciprocity. There exists an optimal temperature or packing fraction at which the average velocity reaches its maximum value. We share a mechanism for particle rectification, devoid of particle-autonomous nonequilibrium drive, with potential usage in systems characterized by nonreciprocal interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call