Abstract

Ball milling motion has been previously studied through computationally expensive, off-line experimental video processing and numerical simulations by the discrete element method. This research establishes a more efficient formulation of the ball energetics and kinetics similar to the Brownian kinetic theory of statistical mechanics. Based on assumptions of thermomechanical equilibrium, negligible gravitational, aerodynamic and surface condition effects, and decoupled impact interaction among balls and with milled particulates, this model proposes mono-parametric spectral energy and velocity probability density functions akin to Maxwell-Boltzmann statistics, along with uniformly distributed impact directionality. The model predictions are calibrated and validated by comparison with published experimental measurements and computationally derived spectra. This descriptive Brownian-like motion model enables effective simulation of contact and impact, material deformation and micro-joining of ball milled bimetallic powders. A comprehensive simulation of the evolving internal fractal microstructure of the processed particulates is implemented at real-time computation speed, and its predictions are compared with experimental micrographs of ball milled NiAl particulates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call