Abstract

Computationally modeling the behavior of wavelength-sized non-spherical particles in optical tweezers can give insight into the existence and stability of trapping equilibria as well as the optical manipulation of such particles more broadly. Here, we report Brownian dynamics simulations of non-spherical particles that account for detailed optical, hydrodynamic, and thermal interactions. We use a T-matrix formalism to calculate the optical forces and torques exerted by focused laser beams on clusters of wavelength-sized spheres, and we incorporate detailed diffusion tensors that capture the anisotropic Brownian motion of the clusters. For two-sphere clusters whose size is comparable to or larger than the wavelength, we observe photokinetic effects in elliptically-polarized beams. We also demonstrate that multiple trapping equilibria exist for a highly asymmetric chiral cluster of seven spheres. Our simulations may lead to practical suggestions for optical trapping and manipulation as well as a deeper understanding of the underlying physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call