Abstract

HypothesisIn spite of the abundant literature on Brownian simulations of the aggregation behavior of colloidal suspensions both under quiescent conditions and in the presence of shear, few works performed simulations including the effect of hydrodynamic interactions. Even fewer works have investigated the effects of shear on the aggregation of electrostatically-stabilized colloidal suspensions. SimulationsIn this work, we employed Brownian dynamics simulations implementing the Rotne-Prager-Yamakawa approximation to account for hydrodynamic interactions and investigated the aggregation kinetics of electrostatically-stabilized colloidal suspensions exposed to simple shear, for various Péclet number values, particle volume fractions and surface potential values. ResultsThe increase in Péclet number (i.e., in the shear rate), leads to an overall increase in the aggregation rate and the formation of large aggregates that, for sufficiently high volume fractions, rapidly grow, leading to either breakup and restructuring phenomena or percolation of the system. In some cases, a bimodal distribution of the cluster population was observed. Our simulations further indicate that at the highest Péclet, the aggregation dynamics is independent of the energy barrier and entirely controlled by shear. A comparison with a simple BD method reveals that neglecting long-range hydrodynamic interactions leads to a substantial underestimation of the aggregation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.