Abstract

Static/structural characteristics of non-covalent complexes, formed by terminally charged hyperbranched polymers and oppositely charged neutralizing linear polyelectrolytes, are examined by means of Brownian dynamics computer simulations. Excluded-volume, electrostatic and hydrodynamic interactions are taken into account in implicit solvent. Three pairs of complexes consisting of linear chains and hyperbranched molecules each bearing different molecular weight and distinctly diverse topologies are examined under conditions of varying electrostatic interactions. The findings from the present work demonstrate that through an appropriate modification of internal structure and external stimuli, key attributes of such complexes like size, shape and local density distribution, can be tuned at desired levels, rendering them promising candidates for a wide range of pertinent nanoscale applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call