Abstract

The translational diffusion constant of a particle, D, in a congested medium or a gel can be written as the product of two terms that account for long-range hydrodynamic interaction between the gel or congested medium and the particle, DEM, and a short-range "steric" term, S. For particles of arbitrary shape, DEM has been examined previously within the framework of the effective medium, EM, model (S. Allison et al., J. Phys. Chem. B 2008, 112, 5858-5866). In the present work, we examine S for rod- and wormlike chain models of duplex DNA in the size range of 100 to over 2000 base pairs. The gel is modeled explicitly as a cubic lattice, and Brownian dynamics simulation is used to examine S for a wide range of rod/wormlike chain and gel parameters. For wormlike chains with P = 50 nm, an empirical formula is derived for S that should be valid over a wide range of wormlike chain/gel parameters. For duplex DNA in the size of several hundred to several thousand base pairs in an agarose gel of 2% or less, fair agreement between modeling and experiment is obtained. However, modeling overestimates the length dependence of D observed experimentally. Finally, the reduction of D of DNA (100 to over 1000 base pairs in length) in cytoplasm relative to water can be accounted for quite well using the effective medium plus steric correction approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.