Abstract

We used brownian dynamics to study the peeling of a polymer molecule, represented by a freely jointed chain, from a frictionless surface in an implicit solvent with parameters representative of single-stranded DNA adsorbed on graphite. For slow peeling rates, simulations match the predictions of an equilibrium statistical thermodynamic model. We show that deviations from equilibrium peeling forces are dominated by a combination of Stokes (viscous) drag forces acting on the desorbed section of the chain and a finite rate of hopping over a desorption barrier. Characteristic velocities separating equilibrium and nonequilibrium regimes are many orders of magnitude higher than values accessible in force spectroscopy experiments. Finite probe stiffness resulted in disappearance of force spikes due to desorption of individual links predicted by the statistical thermodynamic model under displacement control. Probe fluctuations also masked sharp transitions in peeling force between blocks of distinct sequences, indicating limitation in the ability of single-molecule force spectroscopy to distinguish small differences in homologous molecular structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.