Abstract

We perform Brownian dynamics simulation (BDS) of catch to slip transition over a model energy landscape. Through our BDS we demonstrate that for forces below the critical force the bond rupture occurs mostly through the catch pathway while for forces above the critical force the bond rupture occurs mostly through the slip pathway. We also demonstrate that the shoulder in the bond rupture force distribution switches to peak as the loading rate increases progressively and the bond lifetime is maximized at the model dependent critical force. The force dependent bond lifetime obtained via transforming the bond rupture force distribution at a given loading rate is in excellent agreement with that obtained from our BDS at constant forces. An alternative to the current mechanism of catch to slip transition is presented and validated through BDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.