Abstract

The use of computational techniques in magnetorheology is not new. I general, these approaches assume dipolar magnetic interactions, hard sphere repulsions, and no-slip conditions. In this contribution we focus on the dynamics of the equilibrium state in the presence of uniaxial DC fields. To achieve this goal we make use of Brownian Dynamic Simulations. We highlight the importance of the Brownian forces versus magnetic dipolar interaction in the range of low magnetic field strengths. We monitor the formation of columnar structures and their dynamics, in competition with the Brownian motion, until a hexatic crystal phase appears at high field strengths for monodisperse systems. The shear viscosity is computed from the Einstein relation and eventually compared with experimental data at very low-shear rates. A reasonably good agreement between both data sets is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.