Abstract

Stochastic simulation techniques, such as Brownian dynamics, provide us an extremely powerful tool for solving the usually nonlinear equations describing polymer dynamics in solutions and melts [1]. However, the most challenging problems (e.g. the investigation of the universal behaviour of long polymer chains, or the flow calculation based on stochastic simulation techniques) involve a very large number of degrees of freedom and hence require an enomous amount of computer time. In order to solve such problems on currently available computers it is therefore necessary to develop strategies to drastically suppress the level of the fluctuations in the simulations. The purpose of this note is to show that the recently proposed concept of Brownian configuration fields [2] in viscoelastic flow calculations can be regarded as an extremely powerful extension of variance reduction techniques based on parallel process simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.