Abstract

Brown trout (Salmo trutta) are known to have effects on multiple trophic levels in New Zealand streams, but their impacts on lower trophic levels are less well understood within lentic systems. We examined the effects of brown trout removal using rotenone on zooplankton and phytoplankton community composition in the Upper Karori Reservoir, New Zealand. Significant shifts were observed in zooplankton and phytoplankton composition following removal of brown trout from the reservoir. Shifts in zooplankton community composition did not occur immediately following trout removal (February), but instead followed the likely timing of galaxiid spawning (July). The removal of brown trout likely resulted in reduced predation pressure on galaxiids. A major change occurred in the zooplankton community with the dominance shifting from larger crustaceans to smaller rotifers, indicating an increased predation pressure from the larval native galaxiid. A delayed response in zooplankton community composition change indicates rotenone was not the direct cause of this. A major shift in phytoplankton community composition occurred immediately following trout removal. This was not consistent with the trophic cascade hypothesis of reduced grazing pressure from larger zooplankton due to increased galaxiid predation as a result of brown trout removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call