Abstract

Sweet sorghum is a promising crop for a warming, drying African climate, and basic information is lacking on conversion pathways for its lignocellulosic residues (bagasse). Brown rot wood-decomposer fungi use carbohydrate-selective pathways that, when assessed on sorghum, a grass substrate, can yield information relevant to both plant biomass conversion and fungal biology. In testing sorghum decomposition by brown rot fungi (Gloeophyllum trabeum, Serpula lacrymans), we found that G. trabeum readily degraded sorghum, removing xylan prior to removing glucan. Serpula lacrymans, conversely, caused little decomposition. Ergosterol (fungal biomarker) and protein levels were similar for both fungi, but S. lacrymans produced nearly 4x lower polysaccharide-degrading enzyme specific activity on sorghum than G. trabeum, perhaps a symptom of starvation. Linking this information to genome comparisons including other brown rot fungi known to have a similar issue regarding decomposing grasses (Postia placenta, Fomitopsis pinicola) suggested that a lack of CE 1 feruloyl esterases as well as low xylanase activity in S. lacrymans (3x lower than in G. trabeum) may hinder S. lacrymans, P. placenta, and F. pinicola when degrading grass substrates. These results indicate variability in brown rot mechanisms, which may stem from a differing ability to degrade certain lignin-carbohydrate complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.