Abstract

Genetically lean rat pups, overfed by being raised in small litters of three from day 1 postpartum, rapidly become obese compared with pups raised in standard sized litters of eight. Because of the rapid onset of their obesity, we expected that overfed pups would exhibit defective brown fat thermogenesis as is seen in neonatal genetically obese rodents. O2 consumption (VO2) was measured in 2-, 4-, 6-, and 8-day-old homozygous lean (Fa/Fa) Zucker pups from each treatment. We determined minimum rate of VO2 at thermoneutrality and maximum VO2 in response to progressively colder ambient temperatures. Overfed pups were fatter than standard-fed pups (P less than 0.001). But contrary to our prediction, overfed pups had a significantly increased maximum VO2 in response to acute cold exposure. To test the hypothesis that brown fat mediated the increased VO2 in the overfed pups, scapular brown fat lipectomies were performed on a new group of overfed pups at 2 days of age and compared with sham-operated littermate controls. On day 8, no differences in minimum VO2 were seen at thermoneutrality when brown fat is turned off. But maximum VO2 in response to cold, when brown fat is turned on maximally, was significantly reduced in the lipectomized overfed pups compared with sham-operated overfed littermates. These data suggest that manipulations of diet, accomplished by raising pups in small litters, can increase brown fat thermogenic function. The results of the lipectomy experiment imply that brown adipose tissue is a primary mediator of the increased energy expenditure in response to acute cold exposure in the overfed pups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.