Abstract

We have investigated the variability of smoke aerosol absorbing ability with variations in the content of brown carbon (BrC) and black carbon (BC). Using monitoring data on radiative characteristics of smoke aerosol at AERONET stations and the spatial distribution of aerosol optical depth (AOD) obtained by the MODIS spectrometer (Terra satellite), we have detected large-scale smokes during boreal forest fires in Russia and Canada (1995–2012). The spatial distribution (50°–70° N, 95°–125° W) and temporal variability (at AERONET station Fort McMurray) of AOD during the smoking of a part of Canada in July 2012 have been analyzed. AOD probability distributions for July 14–18, 2012, and an estimate of aerosol radiative forcing of smoke aerosol at the upper boundary of the atmosphere have been obtained. We have proposed a technique for the diagnostics of BrC and BC in smoke aerosol particles from the spectral dependence of the imaginary part of the refractive index. At a wavelength of 440 nm, the contributions of BrC and BC to the smokeaerosol absorbing abitity can be comparable in magnitude. In many cases, the absorption spectra of smoke aerosol can be adequately approximated by either power or exponential functions. The presence of BrC in smoke-aerosol particles highly extends the variety of observed absorption spectra in a smoky atmosphere and spectral dependences of single scattering albedo. In the spectral range of 440–1020 nm, the radiative characteristics of smoke aerosol are largely contributed by its fine mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call