Abstract

Wheat is one of the most important staple food crops having global economic significance. Grown globally around 215 million hectares area with production of more than 600 million tons. Wheat is constrained in its production due to several biotic factors, among them yellow rust of wheat, Puccinia striiformis Westend. f.sp. tritici Eriks and Henn. (Pst) and brown rust of wheat, Puccinia recondita f.sp. tritici (Eriks. and E. Henn.) D.M. Henderson (Ptr) continues to be a serious threat and dominant factor limiting its yield potential globally. The estimated yield losses range from 10-70%, while in a severe epidemic the grain damage can be as great as 100%. Pathogens are considered to be favoured by the cooler areas but current races are more adaptable to high temperatures causing significant yield reduction in wheat. In India, prevalent pathotypes for yellow rust include 46S119, 110S119, and 238S119. Yr5, Yr10, Yr15, YrSp, and YrSk genes are resistant to Pst pathotypes in Indian conditions, while in the case of leaf rust of wheat, prevalent pathotypes are 77-5, 77-9, and 104-2. Lr9, Lr19, Lr24, Lr25, Lr29, Lr32, Lr39, Lr45, and Lr47 are the genes having resistance to Ptr pathotypes in Indian conditions. This publication provides a comprehensive overview of the stripe and leaf rusts of wheat in India and their virulent races, types of host resistance and provides a tool for effective management of wheat rust disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.