Abstract

Abstract In our companion paper (Brought to Light I: Michea et al.), we reveal spectacular spiral-galaxy-like features in deep optical imaging of nine Virgo early-type dwarf galaxies, hidden beneath a dominating smooth stellar disk. Using a new combination of approaches, we find that bar- and spiral-like features contribute 2.2%–6.4% of the total flux within 2 R eff. In this study, we conduct high-resolution simulations of cluster harassment of passive dwarf galaxies. Following close pericenter passages of the cluster core, tidal triggering generates features in our model disks that bear a striking resemblance to the observed features. However, we find the disks must be highly rotationally supported (V peak/σ 0 ∼ 3), much higher than typically observed. We propose that some early-type dwarfs may contain a few percent of their mass in a cold, thin disk that is buried in the light of a hot, diffuse disk and only revealed when they undergo tidal triggering. The red optical colors of our sample do not indicate any recent significant star formation, and our simulations show that very plunging pericenter passages (r peri < 0.25r vir) are required for tidal triggering. Thus, many cluster early-type dwarfs with less-plunging orbits may host a yet-undetected cold stellar disk component. We discuss possible origin scenarios and consider why similar-mass star-forming galaxies in the field are significantly more thin-disk dominated than in our cluster sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call