Abstract

Bronchial thermoplasty (BT), an effective treatment for severe asthma, requires heat to reach the airway to reduce the mass of airway smooth muscle cells (ASMCs). Autophagy is involved in the pathological process of airway remodeling in patients with asthma. However, it remains unclear whether autophagy participates in controlling airway remodeling induced by BT. In this study, we aim to elucidate the autophagy-mediated molecular mechanisms in BT. Our study reveal that the number of autophagosomes and the level of alpha-smooth muscle actin (α-SMA) fluorescence are significantly decreased in airway biopsy tissues after BT. As the temperature increased, BT causes a decrease in cell proliferation and a concomitant increase in the apoptosis of human airway smooth muscle cells (HASMCs). Furthermore, increase in temperature significantly downregulates cellular autophagy, autophagosome accumulation, the LC3II/LC3I ratio, and Beclin-1 expression, upregulates p62 expression, and inhibits the AMPK/mTOR pathway. Furthermore, cotreatment with AICAR (an AMPK agonist) or RAPA (an mTOR antagonist) abolishes the inhibition of autophagy and attenuates the increase in the apoptosis rate of HASMCs induced by the thermal effect. Therefore, we conclude that BT decreases airway remodeling by blocking autophagy induced by the AMPK/mTOR signaling pathway in HASMCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.