Abstract

The basal transcription factor TFIID consists of the TATA-binding protein (TBP) and TBP-associated factors (TAFs). Yeast Taf67 is homologous to mammalian TAF(II)55. Using a yeast two-hybrid screen to identify proteins that interact with Taf67, we isolated Bromodomain factor 1 (Bdf1) and its homolog (Bdf2). The Bdf proteins are genetically redundant, as cells are inviable without at least one of the two BDF genes. Both proteins contain two bromodomains, a motif found in several proteins involved in transcription and chromatin modification. The BDF genes interact genetically with TAF67. Furthermore, Bdf1 associates with TFIID and is recruited to a TATA-containing promoter. Deletion of Bdf1 or the Taf67 Bdf-interacting domain leads to defects in gene expression. Interestingly, the higher eukaryotic TAF(II)250 has an acetyltransferase activity, two bromodomains, and an associated kinase activity. Its yeast homolog, Taf145, has acetyltransferase activity but lacks the bromodomains and kinase. Bdf1, like TAF(II)250, has a kinase activity that maps carboxy-terminal to the bromodomains. The structural and functional similarities suggest that Bdf1 corresponds to the carboxy-terminal region of higher eukaryotic TAF(II)250 and that the interaction between TFIID and Bdf1 is important for proper gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.